Padé Approximants and Exact Two-locus Sampling Distributions.

نویسندگان

  • Paul A Jenkins
  • Yun S Song
چکیده

For population genetics models with recombination, obtaining an exact, analytic sampling distribution has remained a challenging open problem for several decades. Recently, a new perspective based on asymptotic series has been introduced to make progress on this problem. Specifically, closed-form expressions have been derived for the first few terms in an asymptotic expansion of the two-locus sampling distribution when the recombination rate ρ is moderate to large. In this paper, a new computational technique is developed for finding the asymptotic expansion to an arbitrary order. Computation in this new approach can be automated easily. Furthermore, it is proved here that only a finite number of terms in the asymptotic expansion is needed to recover (via the method of Padé approximants) the exact two-locus sampling distribution as an analytic function of ρ; this function is exact for all values of ρ ∈ [0, ∞). It is also shown that the new computational framework presented here is flexible enough to incorporate natural selection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Padé Approximants and Exact Two-locus Sampling Distributions By

For population genetics models with recombination, obtaining an exact, analytic sampling distribution has remained a challenging open problem for several decades. Recently, a new perspective based on asymptotic series has been introduced to make progress on this problem. Specifically, closed-form expressions have been derived for the first few terms in an asymptotic expansion of the two-locus s...

متن کامل

ADM-Padé technique for the nonlinear lattice equations

Keywords: Adomian decomposition method Padé approximants Belov–Chaltikian lattice The nonlinear self-dual network equations Solitary solution a b s t r a c t ADM-Padé technique is a combination of Adomian decomposition method (ADM) and Padé approximants. We solve two nonlinear lattice equations using the technique which gives the approximate solution with higher accuracy and faster convergence ...

متن کامل

Exploring multivariate Padé approximants for multiple hypergeometric series

We investigate the approximation of some hypergeometric functions of two variables, namely the Appell functions Fi, i = 1, . . . , 4, by multivariate Padé approximants. Section 1 reviews the results that exist for the projection of the Fi onto x = 0 or y = 0, namely, the Gauss function 2F1(a, b; c; z), since a great deal is known about Padé approximants for this hypergeometric series. Section 2...

متن کامل

New Algorithms for Computing the Matrix Sine and Cosine Separately or Simultaneously

Several existing algorithms for computing the matrix cosine employ polynomial or rational approximations combined with scaling and use of a double angle formula. Their derivations are based on forward error bounds. We derive new algorithms for computing the matrix cosine, the matrix sine, and both simultaneously, that are backward stable in exact arithmetic and behave in a forward stable manner...

متن کامل

Constructing Approximate and Exact Solutions for Boussinesq Equations using Homotopy Perturbation Padé Technique

Based on the homotopy perturbation method (HPM) and Padé approximants (PA), approximate and exact solutions are obtained for cubic Boussinesq and modified Boussinesq equations. The obtained solutions contain solitary waves, rational solutions. HPM is used for analytic treatment to those equations and PA for increasing the convergence region of the HPM analytical solution. The results reveal tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The annals of applied probability : an official journal of the Institute of Mathematical Statistics

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 2012